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HYDRODYNAMICS OF EXPLOSIONS 
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The hydrodynamics of explosions, as a significant scientific specialization of the 
physics and mechanics of explosion processes, encompasses many problems, ranging from the 
generation and propagation of shock waves to the behavior of media under explosive loads. 
Their solution also involves the development of new experimental methods, and the creation 
of mathematical models of the observed effects. The last problem, however, is in many ways 
simplified, since the wide spectrum of flows arising in this case is described by a quite 
limited number of models. One of the most widely employed and simplest models is the model 
of an ideal incompressible liquid. It is successfully employed for the theoretical analysis 
of many phenomena of a typically explosive character and is based on the real possibilities 
of neglecting the strength and plastic properties of the media, friction forces, and 
compressibility under the extremely high pressures generated by the explosive loads. The 
use of such extremely simplified models often makes it possible to understand the essence 
of the process, though in making comparisons with experimental data they must also be 
modified. 

This review is concerned with the analysis of the basic results of experimental and 
theoretical research on the mechanics of explosives, carried out in the Siberian Branch of 
the USSR Academy of Sciences over a period of 30 years from 1957 to 1986, in three important 
areas: shock waves in underwater explosions and cavitation, the problems of cumulation and 
jet flows, and explosive processes in soils. 

Many of the studies enumerated below appeared owing to the attention and often the 
ideas of M. A. Lavrent'ev, which ultimately turned out to be the foundation for the under- 
standing of the phenomena as a whole. 

Shock Waves in Underwater Explosions and Cavitation. Cavity Dynamics. One of the most 
important problems in the study of underwater explosions is the analysis of the dynamics 
of a cavity with detonation products as a source responsible for the formation and the para- 
meters of explosion-generated shock waves (SW). This problem is also of interest for a wide 
range of problems of interaction of SW with isolated cavities and an ensemble of cavities, 
development of bubble cavitation, formation of SW in underwater explosions of charges with a 
complex shape, etc. These questions were studied in detail at the Institute of Hydrodynamics 
of the Siberian Branch of the USSR Academy of Sciences from 1960 to 1980 and were associated 
with the clarification of the fundamental aspects of the effect of the compressibility of a 
liquid, the symmetry of flow, and the state of the gas in a pulsating cavity. 

V. K. Kedrinskii [1-3] was the first to derive in the acoustic approximation a general 
equation describing the dynamics of a cavity in two-dimensional, cylindrical, and spherical 
geometries (v = 0, i, 2). The result is based on the analysis of a one-dimensional, potential, 
isentropic flow of liquid, described by the system of equations (acoustic approximation) 

c~;~l~t~ - ~D,,. v d ' ( l  .... v / 2 ) ' 2 r  ~ O. t l~  _ :  r " / ~ 2 ,  ( 1 )  

o 

where ~l~ rV/~ q ; ~ ~,, [ i,~,/2 ~,~ !dp/p From here it follows that in the two-dimensional and 

spherical cases the system makes it possible to derive exactly and in the case of cylindrical 
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symmetry approximately (v = i; asymptotic approximation up to the term r 2) with the 
substitution r v/2 ~ = G the equation 

(;t : c,,(~r " O, ( 2 )  

i n d i c a t i n g  t h a t  t h e  f u n c t i o n  G = rV /Z( r t  , w h i c h  i s  c o n s e r v e d  on c h a r a c t e r i s t i c s  d i v e r g i n g  w i t h  
a v e l o c i t y  Co, i s  i n v a r i a n t .  

T h i s  r e s u l t ,  a c c o r d i n g  t o  t h e  K i r k w o o d - B e t h e  m o d e l  [ 4 ] ,  c a n  be  e x t e n d e d  t o  t h e  c a s e  when 
t h e  d i s t u r b a n c e  p r o p a g a t e s  w i t h  a v e l o c i t y  c + v :  

r '. ( c - ' ,  ~.,)c,. = o .  ( 3 )  

Substitution of the expressions for G in terms of v and ~ into (3), taking into account 

&,4~r == - - (c-~d(o/dt  I vv/r) ,  8c,)lc)r : - -dr~dr 

u n d e r  t h e  c o n d i t i o n s  t h a t  a t  t h e  c a v i t y  w a l l  ~ = a 0 ,  r = R, v = R makes  i t  p o s s i b l e  t o  
c o n s t r u c t  t h e  g e n e r a l i z e d  e q u a t i o n  f o r  t h e  p u l s a t i o n  

]~('1 ...... 7~;,'r )i i' ~ 3 ,,i~:(t .... ti/3~) .... ~ - ( t  i - h / ~ ) , , , , , .  ; 1~,,,~(1 - -  h,,~),~,: (4) 

where %, (,_l)p ~ ~ ] --I ; c=c o I ', A n = 7.15, A = 3.05-102 MPa. 

Cylindrical symmetry, in particular, because of the above-noted possibility for 
constructing only an approximate model, is a special case. Nevertheless, in spite of the 
complexity of the experiments, where the length of the charge and the velocity of the detona- 
tion are finite, it can be used to interpret real axisymmetric flows, for example, within 
the framework of the methods of independent sections or a point source moving with the 
velocity of the detonation. 

It was shown in [i] that in some formulations it is possible to construct an equation 
for the pulsations of a one-dimensional cylindrical cavity in an incompressible liquid also. 
For the dimensionless variables 

y - -  IUBo,  ro = r/Ro,  g 0 =  I t / R o ,  P0= p(O)/p~,  �9 ..... t(p,Jt,,,)'/~/l~o 

w i t h  a c o r r e s p o n d i n g  t r a n s f o r m a t i o n  o f  ~0 t h e y  h a v e  t h e  f o r m  

a )  t h e  l i m i t  c + ~ i n  Eq. ( 4 )  

b) explosion at a depth H >> R in a liquid with a free surface 

(YY-I y~) In (2H0/y) - -  y2/2 = poy-~v - -  J, 

c) explosion in a cylindrical layer of liquid with r 2 >> R 2 

(YY - i -  Yz) h ,  ( r o l y )  - -  y~12 - -  poy -~ - -  t .  

There are two basic parameters according to which the calculations can be compared with 
experimental data on cavity dynamics: the maximum degree of compression or expansion R0/R , 
and the period of the pulsations T, which is traditionally defined, within the framework of 
an incompressible liquid, as twice the collapse time of an empty cavity ~. From case a) we 
have 

V+ -~ 1" (7/( ;)  l '  ( ] / 2 ) / i "  (5/:~) = 1 .485 ,  T = 2~:. 

If an approximate estimate is employed for the potential ~ = r-Z/=~(t), where r = 2R3/gR 

follows from the kinematic condition R = --8q~/Sr[r=R, an analytical solution can be constructed 
for an empty cylindrical cavity [i]: 

= r 2( t  - V ) .  
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The problem of the dynamics of a cylindrical cavity with detonation products was solved by 

Kedrinskii and Kuzavov [5, 6]. 

For many practical problems it is important to know the parameters of the pulsation of 
the cavities with explosion products and gas-filled bubbles behind the SW front (or with a 
fixed pressure p~ at infinity). We shall present the main parameters [3]. 

i. Incompressible liquid for p~ = const 

(1~olI~,, , ) : '~~  = I + (~, - -  l )  A , ,  ~ = 0 .915R o l f ~  @), A~ = / ' ~ f P ~  

for p~ = p,exp(-t/0) 

2. Compressible liquid [7] (p~ = const): 

It,,m,.l~lb ~ - - . 1 0 : ~ i t ) ( ) 2 5 .  

3. Parameters of the explosion cavity: 

For spherical symmetry 

,t , ) " I I : i  i~, , ; , ,  ,~, ' . ,  ~1"~ 
- -  ] ~  rz i l : , )O / 'o tin), (zz ~-: ().g.l; 0. l ' i ;  0.07(i,  

7'~ ~z I. 14p Ii~ {%A'tlO) i'':l f'll :,i,; (see) ,  

i~/16, (;(;5(t i /{o) ", l  for 11) . l ~  Z ~ 7'1/~ 
(p in kg!m 3, k in sec, R 0 in cm); 

for cylindrical symmetry 

', h'2 "I --1/'~ 1'"';'~'; ~ .-W' I [$~1,,',,1V) #o , [-i~. ().2,1,~; L).t4; (),/1. 

7'i .~ l.I;;~5pC'-' ((~i/:'ol~")~, '~ p,  ', 
I~ i l~o ;120(t, i l~o) " ' l~  f o r  2. tO - i / l o  ~ k ~ 7'11~.0i6. 

Here P0 is the hydrostatic pressure, Pa; E 0 is the heat of the explosion, J/kg; Q and W are 
the mass of the charge, kg and kg/m; i is the number of the pulsations; and, ~ and $ are 
the relative fractions of the energy of the explosive remaining in the detonation products. 

One of the main characteristics determining the dynamics of a bubble is the state of the 
gas filling the bubble. Experimental studies by Kedrinskii and Soloukhin, performed in 1960, 
and Kedrinskii and Pigolkin [8] on the compression of a cavity filled with explosive gaseous 
mixtures 2H z + 02 or 2C2H 2 + 502 showed that under the action of blast waves in a liquid the 
bubbles collapse adiabatically. This fact was established from the agreement between the 
experimentally computed temperature T, = T0(R0/R,)3~ -3 at the moment the mixture is ignited 
and their known ignition temperatures. In an experimental analysis of the dynamics of the 
form of pulsating gaseous cavities Kedrinskii and Soloukhin [9] found that under the action 
of SW a bubble collapses asymmetrically with the formation of a cumulative jet, which forms 
in the process of collapse and causes fragmentation of the bubble. 

There are a number of problems associated with the characteristic features of the forma- 
tion of the structure of the shock-wave field in underwater explosions of explosive charges 
with a complex shape or accompanying the transformation of a pulsating, spherical, explo- 
sion cavity with detonation products in a gravitational field. Here the flow is determined 
primarily by the ring or toroidal form of the cavity. The equation describing the one- 
dimensional pulsations of such a cavity was derived by Kedrinskii for an incompressible 
liquid [i0] 

(a is the radius of the ring), employing a special coordinate system, and for a compressible 
liquid [2] 
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I,, (<~<,'/:)~/~)7 : it-) /}-'1= ~,,,, : .,:/~<,,,,'<.,. 

Calculations using the last equation and comparison with experimental data showed that as 
the radius of the ring increases the maximum and minimum radii of the cavity and also the 
energy balance of the explosion asymptotically approach the data for cylindrical symmetry. 

Underwater Explosion of a String Charge: Near Zone and Asymptotics. One of the most 
successful models which enables a complete analysis of the parameters of the SW from the 
near zone to the asymptotic zone is the Kirkwood-Bethe model [4], developed for problems 
with spherical symmetry and extended by Kedrinskii [ii, 12] to the case of infinitely 
long cylindrical explosive charges (of other asymptotic models we call attention to [13- 
15]). This model is based on the assumption that the function G is invariant on the charac- 
teristics. The so-called peak approximation, which takes into account the experimental fact 
that the pressure behind the SW front decays exponentially, is studied; the parameters are 
determined only in the region close to the front, which makes it possible to replace in 
the analysis of the flow the mass velocity behind the front v by the Riemann variable 

== S cUp/p, and to express the enthalpy on the contact boundary in the form of an exponential 

function m(t) = m(0)exp(-t/00). The latter makes it possible, if necessary, to avoid the 
question of the equation of state of the detonation products. The method of solution is as 
follows. 

The condition of invariance of the function G is extended to the case of characteristics 
converging in the detonation products (denoted by the index *) with a velocity c - v 

~;/ (c ,  - - t , , )  (;,, : O. (5) 

From (3)  and (5)  we o b t a i n  t h e  i n i t i a l  v a l u e  o f  t h e  d e c a y  c o n s t a n t  f o r  t h e  p r e s s u r e  f o r  any 
o n e - d i m e n s i o n a l  f l o w  w i t h i n  t h e  f ramework o f  t h e  peak a p p r o x i m a t i o n  t a k i n g  i n t o  a c c o u n t  t h e  
f a c t  t h a t  d~ = dp /p  and t h e r e f o r e  d p / d t  = -~ (O)O0p(O) :  

2~o (o) 1r (l,c :- p.~,.) 

~"[1. C8C (~Z 2 CA i) 

"~h = I ( c .  - -  . )  0 , ' .  + ..~/2,) - : z c . . = l / ( c .  -t- . ) ,  

~z~ = [ (c  + t~,)(~o 4- , r - ' : 2 ) - -  2c~01/ (c  - -  fO. 

For the coordinate of the SW front we obtain the equation 

l~[.. -[- 
,.f ,.f 

I (],'.'(e-st- l j  -- j" r  
l~il,) I~ o 

( 6 )  

in which the integral on the left determines the delay time of the propagation of the distur- 
bance T. It can be easily found, if the main functions of the problem are expressed in terms 
of (7: 

(; =: P"/~COG( t I I~O), ~"f ~ C,,(/ I I~) ,  
c ;-~.," = c,,(1 - I  21~ ) ,  I; = (~ '~- t ) /~c, , .  

Then for 45s 0 << 1 and small R/r we obtain the first nonlinear correction 
for spherical symmetry 

and for cylindrical symmetry 

"r ~_ ( r  - / / ) , q .  2i~(, I,, (r/t 0 
sp c ~ 

t c ~ ( r  It) , 'q, ~l",a (r~/-' I I ' /" - ) .  

for the acoustics 
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The expressions for z indicate the profile of the wave changes as the wave propagates. 

From the solution of (6) we obtain the coordinate of the front rf, which makes it 
possible to determine the pressure in the front 

, I  5 ( 1 ( " ' ?  ) ' '= '  - -  

and the characteristic time scale ~ for the decay constant ~ = ~0, determining the degree 

of "spreading" of the wave: 
rf 

: : t  %( t+z f fo )  c~ ot t=~,~ ) (1+2[~o) ~ " 

The time t, is "rigidly" tied to the explosion cavity, The results of numerical studies 
for PETN, trotyl, and hexogen can be generalized by the following dependences for the velo- 

city of the SW front: 

Uf .... 3,67r~~ for I ~  ~ t 0 ,  

L%..'% =: t + 0 . 2 8 1 1  + ( O A 6 - - t . 4 9 . 1 0 - 3 r f  + 6.23.10-%f" + 

for > 10. 

Here rf is scaled to the radius of the charge R 0. The time dependence of the coordinate of 
the front relative to the dimensionless time T, = tc0/R 0 is given by the relations 

l~  = ( 1 + 3 . 1 3 5 ~ , )  ~ for  0 < ~ , ~ 5 . 7 5 ,  

,) ~.,~_o,vss 5.75 ~ "~. ~ 26.3, t:g =:: - " J ~ ,  for 
, 0 .S8  Sf -- ] . ~ ( ~ T .  for 2 { i . : ~  ~ T, ~ 2(i~. 

( ) For the : f a r  field (rf > 10 3 ), where G ~ r l / ~ p , _  c + v ~ c  o , t +  .~nA p , U f ~ _ c  o 1 +  n§ p , 

t h e  a s y m p t o t i c  s o l u t i o n  i s  o b t a i n e d  a s  f o l l o w s .  The p r o f i l e  o f  t h e  SW P l  = p 0 e x p ( - x l / 0 ! )  

i s  g i v e n  on  some s u r f a c e  r 0 .  H e r e  ~ a n d  81 a r e  t a k e n  r e l a t i v e  t o  c 0 / R 0 .  The  e q u a t i o n  f o r  

t h e  t i m e  �9 a t  w h i c h  t h e  q u a n t i t y  p l r01 /2  = P 0 G ( ~ l )  = p r l / 2  = c o n s t  a r i s e s  a t  t h e  p o i n t  r h a s  
t h e  f o r m  

r 

T - L +  dr t + ~ p  or 

r o 

�9 i- (r j~ ~ __ 1/'_, . . . .  ,., ) ( 7 )  
1,, ( t , 0 , " / / l , , ' )  + , ,0 ",TA 

+ ( n  + '1) 2 l / r  l,, (r, " 0 ) / m - A ' ,  

w h e r e  z l  i s  d e f i n e d  a s  01 l n ( p 0 / p l ) ,  w h i l e  P l  i s  d e t e r m i n e d  b a s e d  on t h e  c o n s e r v a t i o n  o f  G. 

The r e l a t i o n  ' (7)  i s  a l s o  v a l i d  f o r  r = r f  a n d  c o r r e s p o n d s  t o  t h e  t i m e  ~f  a t  w h i c h t h e  d i s t u r -  

b a n c e  p 0 G ( ~ z ) ,  a r i s i n g  a t  t h e  t i m e  ~1 on t h e  s u r f a c e  r 0 ,  o v e r t a k e s  t h e  f r o n t .  I f ,  b a s e d  on  
t h e  d e f i n i t i o n  o f  t h e  v e l o c i t y  o f  t h e  SW f r o n t  d r f  = [1 + ( n + l ) p / 4 n A )  d ~ f ,  ~ f  i s  e l i m i n a t e d  
f r o m  ( 7 ) ,  a d i f f e r e n t i a l  e q u a t i o n  r e l a t i n g  t h e  a m p l i t u d e  a n d  t h e  c o o r d i n a t e  o f  t h e  f r o n t  i s  
o b t a i n e d .  I t  i s  n o t  d i f f i c u l t  t o  f i n d  a n  a n a l y t i c  e x p r e s s i o n  f o r  0 = �9 - ~ f .  F o r  t h e  i n i t i a l  

c o n d i t i o n s  Po = 4 . 6 5  MPa, 0z = 59 a n d  r0  = 3 2 0 0 ,  t h e  a s y m p t o t i c  b e h a v i o r  i n  t h e  r e g i o n  3200 < 
rf <_ I0 6 is determined by the relations 

p : :  137()rf ~ MPa , 0 =- ~ .4r f"  .,-,u. 

If r > l0 s, t]hen p ~ rf -~ while O ~ r f  ~  which agrees with the asymptotics determined 

by L. D. Landau and S. A. Khristianovich [14, 15]. 
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Fig. 1 

Explosion Hydroacoustics. The linear string charge and its separate modifications [16], 
which enable predominant propagation of SW in a plane perpendicular to its axis, are typical 
examples of so-called explosive sources of sound, widely employed for a wide range of prob- 
lems in hydroacoustics. In the 1960s and 1970s there was definite interest in sources of 
the spatial spiral type (for example, [17 , 18]) consisting of a high-explosive string charge, 
radiation from which is intense and directed and has a long duration as well as tonal 
coloring. The results of investigations of the parameters and structure of the wave field 
generated by spatial and two-dimensional spiral charges (Figs. la and b), carried out in the 
indicated period independently of Kedrinskii, were generalized in [19]. They showed that the 
radiation from such sources consists of a packet in the form of a sequence of SW, whose 
amplitudes are determined from data for concentrated charges with a mass equivalent to the 
mass of the explosive charge from ~chloop of the spiral. Figure ic shows the wave packet 
recorded at a distance of 20 m on the axis of a two-dimensional spiral; the full sweep equals 
5 msec. The repetition frequency of the SW in such systems is determined by the loop length 
and the detonation velocity, while the duration of the packet is determined by the time re- 
quired by the detonation front to traverse the entire length of the charge. It is pointed 
out in [19] that the structure of the wave packet can be substantially changed by changing 
its duration. Indeed, if the velocities of the SW front in the direction of the axis of the 
spatial spiral and the axial ccmponent of the detonation velocity of the charge are identical, 
the packet transforms into one long wave, modulated in amplitude with the rotational frequency 
of the detonation front along the ring elements of the charge. 

Laboratory Methods for Generating SW and Their Application. The main source of SW in a 
liquid is the detonation of an explosive charge. This method is not accessible for laboratory 
studies [20] and does not permit varying the parameters of the wave within adequate limits. 
Classical diaphragmed shock tubes [21] and electric discharge methods [22] actually restrict 
the upper limits of the amplitudes. At the beginning of the 1960s, Vorotnikova, Kedrinskii, 
and Soloukhin [23] proposed and implemented a new method for generating strong SW, based on 
the collision of a moving liquid piston with the closed end of a shock tube or with a liquid 
mass at rest in it. The experiments showed that the method yields SW with a profile of the 
"step" type and amplitudes in the range 102-103 MPa and a regulatable duration of the order 
of 10-4-10 -3 sec. 

If after the moving liquid (state 4) collides with the stationary liquid (state i) SW 
propagate on both sides (states 2 and 3), then their amplitude will be determined by the 
following system of equations 

1'~ /'1 l'l I ~,j~, P : ~  / '1 ~'l l _ . _ ~ , / f ,  3 

Because of the low strength of piezoceramic pressure gauges [24] the development of a shock 
tube of this type required the development of new methods for recording high pressures. 
Kedrinskii, Soloukhin, and Stebnovskii [23, 25] proposed for this purpose and studied the 

496 



first semiconductor pressure gages based on germanium, whose volume conductivity (or the 
conductivity of the contact with the p-n junction) depends strongly on the pressure. A 
change in the gap width E, equal to about 0.i eV at 103 MPa and leading to an approximately 
order of magnitude change in the carrier density, which is an exponential function of E, 

makes the main contribution to this effect. 

The method of SW, generated as a result of liquid-liquid collisions, was employed by 
Kedrinskii, Serdyuk, Soloukhin, and Stebnovskii [26] to determine the velocity and magni- 
tude of the shift in the thermodynamic equilibrium for reversible chemical transformations 
in solutions under the action of a temperature jump T - To = 2.60p'i0 -2 (about 3~ at 102 
MPa). The shift in the equilibrium was recorded based on the change in the concentration of 
the component of the reaction with the highest absorption coefficient. The parameters of 
the system made it possible to study the kinetics of fast reactions with a half-transforma- 
tion time of 2-600 ~sec. 

Short Waves and the Effect of Bounding Surfaces. In real situations one-dimensional 
flows are realized, as a rule, only in a zone relatively Close to the charge, away from 
which the effect of the free surface and the bottom becomes determining, and the distortion 
of the wave profile is significant. The latter is a result of nonlinear effects, consisting 
of the fact that the unloading wave from the free surface, propagating behind the SW front 
with a velocity c + v, overtake and attenuate it. This happens when the angle of incidence 
of the wave on the free surface, measured from the vertical to the surface, is less than some 
critical value 0, = /(n + l)pf/2nA, which determines the moment at which the irregular 
reflection occurs [27]. 

It was possible to describe the characteristic features of the structure and parameters 
of the SW interacting with interfaces within the framework of the theory of short waves, 
constructed by Khristianovich, Grib, and Ryzhov [28]. This model is based on the assumption 
that the quantities characterizing the disturbed motion vary significantly only in a small 
region adjacent to the SW front. In practice the asymptotic behavior for spherical SW was 
determined based on this approach in [15]: 

r f = - -  i -~  2 #zA 
P f 

0 ~ : _2Z_SA~ + I Ao ( I .  ( l ' / l~ f )  - -  1)/(IJ~ ( l ' / i ~ )  .... 0.5),12,, 

where the constants A 0 and p are determined, based on existing experimental data, from curves 
of the pressure at some distance from the charge. 

Lugovtsov [29] showed that the application of this model to the description of wave 
propagation :in a shallow reservoir with depth h 0 leads to practically identical asymptotic 
behavior for linear and spherical explosive charges: 

The class of exact particular solutions of the equations for "short waves ~' was con- 
structed by Zaslavskii [30], who also studied, based on them, the problem of irregular reflec- 
tion of SW from a free surface (cylindrical symmetry was studied in [31]). Here, in parti- 
cular, equations for determining the lower boundary of the zone of disturbed flow were 
derived. 

The interaction of SW with the bottom leads, depending on its mechanical properties, to 
the formation of an entire range of disturbances, preceding the direct wave and the wave 
reflected from the soil. Here there is also the case of irregular reflection, leading to 
the formation of a so-called precursor in front of the wave front. The problem of the 
reflected wave for the case when the soil is represented as an elastic half-space was 
studied by Shemyakin and Markina [32]. Their solution contains the reflection coefficient 
k(~), which depends only on the acoustic properties of the soil and the angle of incidence 
~. The construction of the diagram k(~) makes it possible to determine the zone of irregular 
reflection and the critical values of ~,, for which the soil behaves analogously to a free 
surface (k < 0). 
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Cavitation. It has been established experimentally that cavitation, a zone of vapor- 
gas bubbles, develops near a free surface in the region of regular reflection of SW generated 
by an underwater explosion. It arises under the action of intense tensile stresses in the 
region of the training front of the SW, formed as a result of reflection. The parameters of 
the rarefaction wave were usually determined based on the principle of superposition of 
waves from real and imaginary charges taking into account the corresponding delay times. 
The concept of critical values of the tensile stresses, determining the dynamic rupture 
strength of the liquid, based on which the zones of cleavage as a result of the rupture of 
the liquid near the free surface were determined, was introduced. This static approach, 

however, could not explain the profound inconsistencies in the experimental data on the 
dynamic strength, which was recorded only at themoment at which the visible cavitation 
bubbles appeared, and led to theoretical estimates which differed substantially from the 
recorded experimental values. The fact that an insignificant amplitude of the tensile 
stresses was recorded in a region where there is no visible cavitation could not be ex- 
plained at all. 

Kedrinskii [33, 34] called attention to the fact that in a real liquid there always 
exists free gas in the form of cavitation nuclei (with radii of the order of R 0 ~ 10-2-10 -5 
cm and a volume concentration of k 0 m 10-8-10-12), and he proposed that in problems of 
propagation of rarefaction waves the liquid be regarded as a two-phase medium. This enabled 
him to describe first the dynamics of the development of the cavitation zone from nuclei 
[33] and to calculate the profile and parameters of rarefaction waves [33, 34] on the 
basis of the quite simple approximate mathematical model which he proposed: 

A.~ = ,~, 

' i~/' = I (oJ, a//92 (t%t,',,)-' ~ + - I;I,:, 
dt ~ 

( 8 )  

where a=(3]:o/R~)'/~; ~ = p_p,A.-v , and the spatial coordinate has a scale factor of ~k zl6. 

Numerical investigations of the system (8), carried out for an explosive charge with a 
mass of 1 g at a depth of 5.3 cm (ten radii of the charge) from the free surface, showed 
that in the developing cavitation zone the volume concentration of bubbles k grows rapidly 
with time, reaching values of i07-10 s relative to the initial value k0 (it was assumed that 
R 0 = 5 • 10 -5 cm, k 0 = 10-11). In constructing the computed cavitation zone at different 
times the fact that the apparatus and methods employed in the experiment have a finite reso- 
lution was taken into account. This means that cavitation bubbles which do not reach 
detectable (smallest visible) sizes or which in the dynamic process are transferred into the 
lower (relative to this threshold) part of the spectrum, cannot be recorded. From here 
there arises the concept of the lifetime of a visible bubble and correspondingly the 
dynamics of the visible zone of cavitation. Comparison with experiment shows that the model 
(8) describes this effect quite well [33]. Figure 2 shows for one point on the axis of 
symmetry the dependences k(t) and p(t) for the case indicated above. The broken line in 
the graph of k(t) separates the cavitation zone into visible and invisible zones, while 
the points at which the broken line intersects the curves k(t) determine the time interval 
in which the visible size of a bubble exists at the given point of the computed region. 
Profiles of rarefaction waves are shown at the bottom. One can see from a comparison of the 
graphs that it is meaningless to record the dynamic load at the moment at which the bubbles 
reach visible size, since by this moment the tensile stresses in the medium have practically 
vanished and to record their maximum (curves i) a time resolution on the graph of the order of 
i0-9-i0 -s sec is required. 

Calculation of rarefaction waves made it possible to observe one other important fact. 
It turned out that the maximum negative pressures recorded in a liquid depend not so much on 
the maximum amplitudes of the tensile stresses as on the time at which they are applied. If 
the maximum amplitude appears instantaneously, it can be recorded. However the time during 
which the medium preserves it is short: by 10 -7 sec the unloading virtually vanishes (for a 
single-phase liquid this time is two orders of magnitude longer, 10 -s sec). If the slope of 
the rarefaction-wave front reaches i0 -~ sec, the maximum tensile stresses admitted by the 
cavitating liquid decrease by two orders of magnitude (curve 3). It is also interesting to 
note that the unloading vanishes even before the bubbles reach visible size - approximately 
by 7 ~sec. The curves 2 were obtained with a front slope to 0.1 ~sec. 
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Experiments intwo-dimensions, carried out by the author, showed that when a strong SW 
is reflected from a free surface the liquid near it breaks down, forming some sequence of 
flat layers (Fig. 3), cleavages, each of which in its turn consists not of a continuous, but 
rather cavitating liquid. 

The process of breakdown of the liquid in unloading waves, as one can see, is compli- 
cated and develops in stages: growth of cavitation nuclei and transfer of the liquid into a 
two-phase state, unbounded growth of cavitation bubbles in the zone and formation of a foam 
structure, breakdown of the foam and formation of "boiling" cleavages. This type of develop- 
ment of cavitation, whose characteristic times are much longer than the duration of the 
applied tensile stresses, is called irreversible breakdown of the liquid, in contrast, for 
example, to the phenomenon of ultrasonic cavitation, when the zone vanishes when the source 
generating it is switched off. 

It is logical to assume that there exists some energy threshold, characterizing the 
possibility of irreversible breakdown of a unit mass of liquid in the rarefaction zone. 
Stebnovskii and Chernobaev [35] established experimentally that when a liquid volume is 
broken down by an exploding wire, the threshold at its center is of the order of 1 J/g. 
Naturally, this integral characteristic is not absolute: it can depend on the pressure 
gradient behind the front of the SW incident on the free surface, and irreversible breakdown 
can effect only part of the volume loaded by the explosion. Stebnovskii [36] noted that the 
process of breakdown is accompanied by a complicated pattern of development of disturbances on 
the outer boundary of the liquid volume, which is determined by some dimensionless parameter, 
characterizing the ratio of the inertial and capillary forces. 

The two-phase model of the development of bubble cavitation for determining the struc- 
tural dynamics of the wave field in a liquid was successfully applied, in an exact formula- 
tion, by Kedrinskii and Plaksin to solve a number of classical problems. In the problem of 
the generation of ultrasonic waves [37, 38] it was shown that as the frequency of the oscilla- 
tions of the piston decreases the maximum negative pressures supported by a real cavitating 
liquid are ~ch lower, while the profile is distorted to such an extent that one cannot talk 
about regularity of pressure oscillations. It was found that the unloading wave, calculated 
in [39] within the framework of the classical shock tube, has a fine structure. It turned 
out that under conditions of outflow of a preloaded liquid volume, there forms in it a per- 
turbed flow, which separates into a precursor i, formed by a centered rarefaction wave and 
propagating with the frozen velocity of sound, and the main disturbance - a rarefaction wave 
2 (Fig. 4a), whose oscillating profile flattens out with time and approaches a monotonic 
profile. The structure of the SW reflected from the free surface turned out to be nontrivial 
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[40]; it transforms into a wave packet (flat one-dimensional formulation) with a high 
amplitude in the positive phase (Figs. 4b and c); the broken line shows the profile of the 
rarefaction wave for the single-phase model. 

Kedrinskii, Merkh, and Khansson were the first to apply the two-phase model to the 
analysis of the pressure field in problems of erosion testing [41], when the zone of in- 
tense cavitation develops in a narrow gap between the ultrasonic radiator and a stationary 
sample or near the bottom of a tube with liquid, to which a downwards acceleration of the 
order of 103 g is imparted within tens of microseconds. This problem was studied numeri- 
cally for a polydispersed composition of cavitation nuclei by Kedrinskii, Pederson and 
Khansson [42], who showed that the expansion of the size spectrum of the bubbles removes the 
singularity associated with the appearance of unrealistically narrow pressure peaks with 
high amplitude, correlated with the moment at which the cavitation cluster collapses. 

Uncertainty of the initial state of the cavitation nuclei is characteristic for all 
cavitation problems mentioned above: their size spectrum and the "partial" density. This 
is also linked with the problems of resolving the physical state of the liquid, loaded by 
the rarefaction wave, and the understanding of the mechanism of development of bubble 
cavitation. In recent years fundamental results have been obtained in this area at the 
Institute of Hydrodynamics of the Siberian Branch of the USSR Academy of Sciences. 
Besov, Kedrinskii, and Pal'chikov, employing a method based on the diffraction of a 
laser beam by micrononuniformities and the dynamics of the scattering function, were 
able to observe and prove experimentally that in distilled water the monodispersed composi- 
tion of gas nuclei with radii of about 1.5 Dm predominates [43]. The density of micronon- 
uniformities, evaluated from photographs of tracks of their diffraction spots in the region 
of liquid illuminated with a laser beam, turned out to be of the order of 105 cm -3. 

Based on the results of the analysis of experimental data and theoretical investi- 
gations, Kedrinskii proposed a new model for the formation of dense bubble clusters [42], 
based on the dependence of the time at which the microbubbles reach a detectable size on 
their starting spectrum and the parameters of the wave: i) the starting density of micro- 
nonuniformities is already of the order of 10s-10 e cm-3; 2) in the region of threshold 
values of the applied stresses the cluster is saturated with bubbles gradually owing to 
systematic growth to a visible size of nuclei from the bottom part of the spectrum; and 3) 
for much larger stresses "instantaneous" saturation of the zone with bubbles, whose entire 
starting spectrum reaches visible sizes simultaneously, occurs. Analysis carried out by the 
author together with Plaksin and Kovalev for the example of the dynamics of a single bubble 
[44] and together with Pederson for the cavitation zone [42] confirmed the reality of the 
proposed mechanism for multiplication of detectable bubbles in a cluster. 

Shock and Sound Waves in Bubble Media. A series of experimental and theoretical inves- 
tigations of the propagation of strong SW in a liquid with gas bubbles, which made it possible 
to establish the basic laws governing the process, the mechanism for the transformation of 
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the energy of the SW, attenuation of the SW, and the formation of the structure, was performed 
at the Institute of Hydrodynamics in the 1960s. The characteristic features of this process 
are determined by the nonequilibrium nature of the liquid and gas phases with respect to the 
pressure and the complicated character of the absorption and reradiation of the energy of the 
wave by the two-phase medium. Experiments on the analysis of the attenuation of waves in 
bubble screens with different acoustic properties were begun by Minin, who examined also the 
first convenient model of a screen - a sequence of alternating flat one-dimensional liquid 
and gas layers. Some characteristic features of this model were studied in [45] from a 

different viewpoint. 

The first complete experimental analysis of the transformation of SW in bubble media was 
performed by Kedrinskii [46], who discovered that as a short wave penetrates into a bubble 
layer it separates into a precursor, propagating with the velocity of sound in the liquid, 
and the main disturbance, "traveling" in the form of a wave packet with a much lower equili- 
brium velocity. It is shown in [45] that as the thickness of the bubble layer s increases 
successive formation of several precursors can be observed (Fig. 5). In [46] a similarity 
criterion was: found for the attenuation of the amplitude of a shock wave in the layer 

~1 (;~t,'o)'12 l ! l t  o ~-~ (.21,'c,. 

Here ~ is the characteristic frequency, and c, is the equilibrium velocity of sound. Numeri- 
cal studies of the transformation of a short SW by a bubble layer and propagation of a wave 
in the half-space occupied by gas bubbles were also performed there within the framework of 
an approximate model [the system of equations (8)]. It was found that strong dynamic loads 
(amplification of the wave) appear under conditions of pulsation on the solid wall of the 
bubble layer, initially located in a region of depressed pressure. It turned out that when 
the hydrostatic pressure P0 is abruptly restored the pulsations of the bubbles and strong 
inertial effects lead to the generation of a series of strong pulses with amplitudes of 
(10-80)p0 , depending on the degree of the initial rarefaction, over the entire surface of 
the wall. 

It is well known that bubble media are characterized by dispersion. Fox, Carley, and 
Larson [47] observed in their experiments on the attenuation of sound in a medium with a low 
volume content of gas bubbles that there is no "window of nontransparency" in the dispersion 
dependence. Kedrinskii showed for the first time in [46], on the basis of a two-phase model, 
that the "bleaching" effect is linked not with dissipative losses, but rather with the poly- 
dispersed size spectrum of the bubbles, whose partial concentrations varied in the range 
0.00015-0.00025. 

Problems of Cumulation and Jet Flows. A number of fundamental results in the area of 
fundamental research on the mechanics of explosions were obtained at the Institute of Hydro- 
dynamics of the Siberian Branch of the USSR Academy of Sciences. This is nos surprising, 
since the school created by Lavrent'ev for the physics and mechanics of explosion 
processes, based on the models which he formulated, developed~er his leadership and direct 
participation new directions in this area. In what f~ollows we shall analyze the results 
concerning only cumulative jet flows and effects associated with them. 

Classical Cumulation. The understanding of the mechanism of jet formation accompanying 
compression of the products of an explosion of metallic cones (linings)and the piercing of 
armor by them was developed by Lavrent'ev [48], who proposed that under explosive loads the 
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metal be regarded as an ideal incompressible liquid and reduced the problem to the classical 
theory of stationary jet flows. 

A diagram of the structure of a cumulative jet flow is shown in Fig. 6. In the system 
of the contact point (a), moving from left to right with a velocity Vc, it is viewed as a 
jet, flowing from infinity with a velocity V against a wall. In the laboratory system the 
velocity of the elements of the lining is determined by the vector W, making angle (w -(~)/2 
with the surface of the lining (in Fig. 6b it is indicated by the double broken line). 
Here (p is the angle of instantaneous rotation of the lining by the sliding detonation wave. 
From the figure one easily find that 

#,c~:::l'Fcos((p,i2)lsin ~ ] ) s h l , l , ' S i i i I ~  , 

V " IT" s in 0p!2 I ~ ) / s i n  ~ 1)( I  -~ iN ~.'sT. i4). 

From here the velocity of the jet and rammer have the form 

V j e t  7, c ' V ::-. ~V cos (a /2)  D ( /  k. 
= s i n  (p/2) , ' 

i 

Vra m = Vc - - I '  �9 l l "  cossin (~./2)(t~lZ) D (1 

sin I(m _: 2)/2 fl 
sin ([4,/2) / '  

cos I0P - a)/2] '! 

The structure of the flow for (a + q) < ~/2 has been well studied; this is a system consisting 
of a high-speed cumulative jet with a relatively high specific kinetic energy and a so- 
called low-velocity rammer, containing the main part of the mass of the starting lining. 
Their masses are related by the relation mjet/mra m = tan2($/2). 

Titov [49] called attention to the possibility of the existence of a regime of so- 
called "reverse" cumulation, characteristic for shallow linings (the angle a + q ~ ~/2). 

The turning angle (~ obviously depends primarily on the physical parameters of the prob- 
lem: the lining material and the type of explosive, the ratio of their masses, etc. If it 
is fixed and the angle a is increased (Fig. 6b, curves 1-3), then it is easy to see that 
the velocity vector W is oriented away from the axis of symmetry - the cumulation effect 
decreases, and then there arises a reversal of the flow relative to the standard flow, 
associated with the unique "slipping through" of the lining. The mass of the jet along the 
x axis increases substantially, and although in the optimal regime its velocity drops by a 
factor of 1.5-2, the specific energy of the matter, as before, is several times higher than 
the specific energy of the explosion. 

Gorshkov [50] measured experimentally the velocity distribus along the jet for the 
reverse regime, and employing a well-known method he reproduced the dynamics of the angle 
between the converging lining and the core, and showed that the jet forms partly by the 
classical scheme and partly by the reverse scheme. 
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Kedrinskii and Stebnovskii calculated in a two-dimensional impulsive formation the 
nonstationary starting stage of the formation of the structure of a cumulative flow for 
shallow linings. The lining was regarded as a strip of ideal incompressible liquid, bent 
at an angle 2~, and the effect of the detonation products was modeled by a special starting 
distribution of the pressure pulse along the outer boundary of the strip. Figure 7 shows 
the computed form of the lining at the time t = 25.8 psec (solid line). One can see that 
at the center of the strip the flow is reversed, an inverse cone is formed and from the cone, 
as a result of compression, there forms a reverse cumulative jet, directed toward the starting 
position of the lining (broken line), and a rammer, as the main element of this regime of 
the flow. Its velocity equals 1.32 km/sec (a lead cone with an angle of 2~ = 150 ~ , a 
thickness 6 = 2 cm, and a base radius of ~17 cm was studied). The starting stage of 
reversal is already recorded at t = 3.7 gsec. 

Merzhievskii and Resnyanskii calculated, within the framework of a model of a visco- 
elastic body of the Maxwellian type [51], the collapse of a shallow (120 ~ ) copper lining, 
taking into account its strength properties. The dynamics of the process of formation of 
the shell is shown in Fig. 8. Based on an analysis of the dynamics they assert that at 
first the process develops according to the standard scheme and emerges into the new regime 
only after some time. The figures presented give a quite ideal representation of the angle 
between the converging elements and the axis, based on which it is difficult to draw an 
unequivocal conclusion about the characteristic features of the structure of the flow. 
Judging from the dynamics of the outer form, one gets the impression that the flow develops 
primarily according to the "classical scenario" while the reverse cumulation effect is a 
consequence of complex deformation with breakdown and "inversion" of the periphery of the 
lining and not its center. These calculations can be compared with the experimental x-ray 
diffraction picture, obtained by Titov, of one of the intermediate stages of the deformation 
of the lining (Fig. 9). 

The hydrodynamic theory, as pointed out in [48], has substantial limitations. They are 
manifested primarily at small collision angles. According to [52], jets arise only if the 
collapse of the lining (and the motion of the point of contact) occurs with subsonic velo- 
city (in Fig. i0, below curve 3, the flow is not a jet flow). Trishin and Kinelovskii [53] 
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showed that in the region of the curves 3 and 2 (Fig. 10) the jet is unstable and is frag- 
mented. The maximum~ossible velocity of monolithic jets is determined by the expression 
Vc,ma x = c o + /~ + W 2. 

The discrepancy between the experimental and computed data for a number of basic charac- 
teristics of the process, such as the velocity of the cumulative jets, the deformation of the 
indicator line, playing an important role in the estimates of the structure of the flow 
under conditions of oblique Collisions, and other characteristics, have made it necessary 
to study viscous models of the lining [54-57], which, however, do not eliminate the existing 
discrepancies. Rubtsov, who proposed amodel of a "pseudoplastic liquid," was able to achieve 
good agreement with experiment [58]. He introduced the similarity parameter B = 3/~pWZ/aT(T), 
which determines the ratio of the pressure at the critical point to the yield stress of the 
metal. I~ the limit B + ~ one obtains the flow of ideal liquid, and for B >> i the flow is 
qualitatively similar to the case of a viscous liquid because of the existence of vorticity 
boundary layers near free boundaries. Obviously the dynamic yield stress determines the 
relative fraction of the energy of the system expended on overcoming the strength forces and, 
therefore, the possibility of jet formation for real metals. The latter is evaluated from 
the critical collision velocity W,, for which this process terminates: W, = /2-~7a/p/ cos ~. 
This relation determines the curve 1 in Fig. i0, which bounds the region of jet formation on 
the left [53]. 

Dynamic problems of the behavior of axisymmetric linings under the action of explosive 
loads play an important role in understanding the formation of cumulative flows. As a rule, 
they are studied approximately within the framework of the method of independent sections, 
when the problem reduces to one-dimensional collapse of a cylindrical ring, and then by 
taking into account the time delays the picture of the axisymmetric flow is reconstructed. 
This approach was employed by Kinelovskii, Matyushkin, and Trishin [59, 60], who carried out 
a numerical study, and by Kedrinskii [61] and Kinelovskii [62], who obtained an approximate 
analytical solution to the problem of the convergence of a ring of ideal incompressible 
liquid. Comparison with experiment showed that the starting stage of the process, on the 
basis of this model, is described satisfactorily. 

Of course, the model of an ideal liquid could not explain a number of interesting physi- 
cal effects observed in experiments: stopping of the casing accelerated by an explosion and 
explosive vaporization of its inner layers in the region close to the axis (Fig. ll) Shows 
the process of simultaneous collapse of a copper cylindrical shell 1 and its "explosive" de- 
composition 2). The explanation was given by Matyushin and Trishin [63, 64] within the frame- 
work of the model of a viscous liquid: as a result of irreversible losses of part of the 
kinetic energy of the collapsing ring its inner layers can be heated up to the temperature of 
vaporization and form the experimentally observed high-velocity jet (it is known that for 
beryllium shells its velocity reached 90 km/sec). 

The problems of welding by explosion - a phenomenon discovered by Bichenkov, Deribas, 
Sedykh, and Trishin [65] under conditions of high-velocity interaction of plates -- stimulated 
interest in classical problems of asymmetric collision of flat jets, which, as is well known, 
do not have a unique solution. A definite step in this direction was taken by Kinelovskii 
and Sokolov [66]. Based on the results of experimental and numerical studies they formulated 
the hypothesis that amongst all possible flow configurations the configuration realized is 
the one for which the curvature of the section of the branching stream line in receding jets 

504 



is minimum. Trishin [67], based on ananalysis of the position of the centers of inertia of 
liquid elements, separated on the postcollision converging and diverging jets, and on the 
condition that in the limit the problem must reduce to the problem of a symmetric collision, 
obtained an analytic solution for the masses of the diverging jets: 

T/~. 2 

t - -  cos c~/(l - -  ~2 s in  2 ~z) 

t + cos cU(t  - -  Ix~ s in  e ~ ) '  

where p = (m 2 - ml)/(m 2 + ml) determines the ratio for the masses of the converging jets 
(the index 1 refers to the thinner jet). In addition it turned out that if 2~ is the 
angle between the converging jets, then 2~ = =p + ~, where q~ and ~ are the angles of the 
diverging jets relative to jet i. 

One of lhe important practical problems is the problem of the penetration of a jet into 
a barrier. Ih this case the densities of the jet and the barrier can be different, which 
imposes specific features on the character of the flow. According to [48], for the case 
when the constants in Bernoulli's integral are equal, the entire flow can be described by 
continuous analytical functions (the line separating the flows u passes through the critical 
point). Kinelovskii and Trishin [68] analyzed this type of flow in detail for the 
example of a symmetric collision of flat two-layer jets of ideal incompressible liquid 
for different constants in Bernoulli's integral in the layers. They showed that for some 
regimes of the stationary potential flow for close values of the constants and small relative 
thickness of the outer layer, the approximate solution is obtained bywell-known methods and 
agrees completely with the experimental results. 

Jet Flows Accompanying Underwater Explosions. In the 1970s, under the initiative of 
Lavrent'ev, a series of experimental and theoretical studies of nonstationary flows 
with free boundaries, which essentially opened up in the hydrodynamics of explosions a new 
class of nonstationary jet flows arising with underwater explosions near bounding surfaces, 
was carried out at the Institute of Hydrodynamics of the Siberian Branch of the USSR Academy 
of Sciences. 

Lavrent'ev [69] examined a paradoxical effect arising in the problem of the destruction 
of a barrier by a noncontact underwater explosion: it was observed that there exists an 
appreciable interval of distances away from the wall at which the amount of explosive re- 
quired to destroy the wall is constant. He called attention to the local character of the 
destruction and proposed the following model for the process: the presence of the solid wall, 
by virtue of the asymmetry of the flow, distorts the form of the explosion cavity in the 
process of the collapse of the cavity, and this leads to the formation of a high-velocity 
cumulative jet, which is directed toward the wall and can destroy the wall when it impinges 
against it. 

A wide class of jet flows was discovered and investigated by Kedrinskii [70-74] in an 
analysis of vertical plumes on the free surface of a liquid with underwater explosions. The 
plumes were distinguished by the directed nature of the ejection, characteristic only for a 
liquid and not occurring for analogous explosions in soils. Lavrent'ev participated 
directly in the discussion of the formulation of the problems and the results, and he pro- 
posed the first physically consistent model of the process [69]: the shock wave from the 
explosion forms on the free surface a cumulative depression, and the expanding explosion 
cavity creates a velocity field orthogonal to its surface. Flow into the depression leads to 
development of a cumulative jet. Another model, which is useful for large-scale explosions, 
was proposed by Ovsyannikov [75] on the basis of the results of the solution of an exactly 
formulated problem of the floating up of a bubble. According to this model, the explosion 
cavity with detonation products, which has a maximum size, is deformed in the process of 
floating up in such a manner that an upward directed cumulative jet forms at the bottom of 
the cavity. It is conjectured that for an appropriate depth of the explosion this effect 
can determine the structure of one of the directed ejections. 

Experimental and numerical investigations carried out by Kedrinskii [70, 72] made it 
possible to determine the mechanism of the development of plumes and their structure and 
to construct a simple hydrodynamic model of the phenomenon. He proved that the basis for 
the structure of the vertical ejection for the first group of explosion depths (h < Rma x) 
forms a jet tandem, the first jet of which is formed as a result (Fig. 12a) of inertial 
motion of the layers of liquid above the explosion cavity after negative radial accelerations 
appear at the cavity, and the second jet of which forms as a result of the closure of the 
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open cavern, formed after the explosion cavity is opened up. It turned out that the cumula- 
tive depression mentioned above does not play a significant role in the formation of the 
first jet, while its mechanism is clearly demonstrated by the development of the jet flow as 
a result of projection of the layer of liquid on the initially flat free surface by a spherical 
or cylindrical solid body (Fig. 12b). It was found experimentally that if the tandem forma- 
tion process is reversed, then the structure of the flow will be adequate for surface effects 
developing under conditions of high-velocity penetration of a bullet into water. 

For explosion depths of the order of Rma x the vertical plumes vanish. It was found 
experimentally and later computationally that at the collapse stage the explosion cavity 
forms a vertical high-velocity cumulative jet, directed away from the free surface into 
the bulk of the liquid and destroying the connectivity of the flow region [70]. Penetration 
of this jet into the liquid explains the experimentally observed anomalous increase in the 
pressure near the point of collapse. Numerical calculations showed that, at the next stage 
of the expansion of the explosion cavity separated by the jet, radial (lateral) jet flows, 
clearly observed in the experiments, form on the free surface. 

As the explosion depth is further increased, vertical ejections, which also have a 
jet structure and whose formation mechanism is described by the model of Ovsyannikov [75], 
arise once again. It is shown in [74] that there exists a different type of vertical plume, 
which develops with an explosion of a ring-shaped charge consisting of DSh near a free 
surface. These experiments essentially modelled one other possibility for the appearance 
of directed ejection under conditions of large-scale underwater explosions at large depths. 
In this case the explosion cavity transforms, as it rises, into a stable torus with detona- 
tion products, whose pulsation can lead to the indicated effect. 
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Amongst studies of surface effects we should call attention to two works on the problem 
of modeling of an explosion on a free surface. Based on investigations of eddy dynamics 
Deribas and Pokhozhaev [76] concluded that the flow arising is self-similar, and the para- 
meter determining the effect of the explosion is the momentum imparted to the liquid. 
Accurate experiments, performed by Minin [77], clarified the fact that the law governing the 
development of the eddy, obtained in the preceding work, does not correspond to the motion of 
a weightless liquid. The self-similarity remains, however, and its indicator equals 0.47 and 0.38 
for cylindrical and point explosions, respectively. According to the data of [76], it equals 0.3. 

Explosions in Soils. In this section we do not pretend to give an analysis of the 
general status of work on explosions in soils and rocks over the last thirty years, especially 
since this was done in the review in [78] for data up to the beginning of the 1970s. The 
main attention is devoted to those directions and new problems in this area of science which 
are most closely associated with Lavrent'ev's school. Here three directions can be 
conditionally distinguished, noting also the dynamics of deformation of soils, for which 
more accurate experimental studies have made it necessary to take into account the effect of 
viscosity and dilatancy accompanying an explosion [79-82], penetration of detonation products 
into the soil, and concomitant heat-transfer processes [83]. 

Theory of Camouflet Explosions. The main theoretical study of the dynamics of the 
medium under the conditions of a camouflet explosion are zone models, developed in 1950-1970 
[78] and constructed based on a different description of the behavior of the medium depending 
on the strength of the effect of the explosion load on the medium. 

Amongst the works performed by Siberian scientists here we call attention to the in- 
vestigations of E. I. Shemyakin [84, 85], devoted to the determination of the dynamics of 
stress waves in solids under the conditions of a camouflet explosion. Comparison of the 
experimental data on the attenuation of diverging stress waves with the asymptotic behavior, 
obtained in the explosion problem by the method of short waves for a medium with friction, 
showed that for a large range of distances the asymptotics describe an experiment well, if it 
is assumed that the plastic state a r = ~c 8 + ~ and ~ = v/(l - ~), where v is Poisson's ratio 
in the elastic state of the medium. 

The quite interesting, for the practical viewpoint, problem of a camouflet explosion 
permits checking different modifications of models and evaluating by means of a numerical 
experiment the effect of various factors. In this manner models were constructed and calcu- 
lations of the dynamics of the medium with a camouflet explosion were carried out taking 
into account viscosity [86, 87], dilatancy [88, 89], the nonadiabatic nature of the detonation 
products and heat transfer as the detonation products penetrate into the porous medium[90-92]. 

There are a number of works on the experimental study of the granular composition of the 
pieces into which the rock is fragmented by an explosion. Kuznetsov and his students [93, 
94] successfully employed the Rozin-Ramler distribution to describe the granular composition. 
Data on the dependence of the lumpiness parameters on the distance are presented in [95]. 

The model describing the destructive action of the explosion on rocks was improved. 
The new feature here is the application of the mechanics of brittle fracture (Sher, 
Cherepanov, and others), enabling the evaluation of the dynamics of cracks [96-99] and 
description of the expected degree of destruction of the mass after the explosion. There 
are many works on the description of the change in the filtrational permeability of rocks 
under the action of an explosion [i00]. 

Excavation Blasts: Experiment and Hydrodynamic Models. Here attention was devoted 
to the problems of improving the technology of blasting, in particular, the development of 
channels using a series of point charges and networks of well charges; more accurate empirical 
dependences were determined for the parameters of the funnel on the geometry of the arrange- 
ment and mass of the charge [i01, 102]; and, the effect of water-saturated levels on the 
formation of the blasting crater was analyzed [103]. The method of modeling large explosions 
[89, 104], making it possible to model the soil dispersion stage taking into account gravity, 
has been substantially developed. 

The ultimate goal of studies of the action of an explosion, associated with the develop- 
ment of hydrodynamic models, is to solve the practical problems of determining the parameters 
of the blasting crater for realistic configurations of explosive charges taking into account 
free surfaces and the characteristics of the soil structure (stratification, the presence 
of water-bearing strata, etc.). 
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The hydrodynamic models f6r describing the dynamics of solid media under the action of 
intense explosive loads are based on the "incompressibility scheme" proposed by Lavrent'ev 
!78]. Based on this scheme the result of an explosion is evaluated from the velocity field 
v arising in the medium as an incompressible liquid after the momentum from the explosi_on is 
transferred to it. To describe the velocity the following problem is posed: Aq = O, v = 

grad.q, and a t  t h e  boundary the  p o t e n t i a l  i s  de te rmined  by t h e  i n t e g r a l  ~I,:---TV p(l)(ll. 
0 

According to this model the velocity field in the soil from an explosion of a buried 
string charge with a small radius (compared with the depth h), parallel to the free surface, 
is described by the complex potential of the source with intensity q, lying at a distance 
h from the free surface, where q~ = 0: 

Here q = Re w and the velocity on the free surface has the form 

a,,, I .-- 

It is maximum above the charge and decays as i/x a as x § +_~. 

As suggested by Vlasov and Lavrent'ev the boundary of the crater on the free surface 
is found from the condition Vy = c (c is the critical velocity characterizing the strength of 
the soil). In the practical application of such calculations it is necessary to know the 
parameters q for the given charge and c for the soil. For this purpose there exist definite 
dependences, which include empirical constants, determined with the help of calibration ex- 
plosions [105, 106]. 

Within the framework of the liquid model it is possible to solve "inverse" problems, 
of which the problem of a directed explosion is important in practice: to find the distri- 
bution of the explosive on the surface of a given volume of soil that provides after the 
explosion a motion with a cons{ant velocity over the volume. It was first solved by 
Lavrent'ev, Kuznetsov, and She~, who showed that in this case the indicated distribution 
must provide a linear flow pot4ntial in the given volume [107]: ~ = ax + by + cz + d. 

Transformation from the potential to the distribution density of the explosive charge 
is carried out taking into account the conditions for the operation of the charge. If the 
charge operates like a superposed charge without stemming, then it may be assumed that the 
momentum from it is proportional to its thickness, and the distribution density of the 
charge over the surface of the volume is proportional to the potential and varies linearly 
with the distance in the direction of ejection. 

According to the liquid model the soil is regarded as a liquid, which, on the one hand, 
simplifies the problem of finding the velocity field, but on the other does not permit 
determining the entire profile of the blasting crater: only its width is calculated. This 
problem is solved based on the new solid-liquid model proposed by Lavrent'ev and first imple- 
mented by Kuznetsov [105]: near the charge, where the velocity is greater than some critical 
value c, the soil is regarded as a liquid, and in the rest of the region it is regarded as an 
absolutely rigid body. The boundary of the crater is not known beforehand and is sought as 
a streamline, on which the velocity Ivl = c. We note that the problem of the form of the 
blasting crater in this formulation is more complicated and belongs to the class of "stream" 
problems in the theory of flow around objects. 

In the case of the explosion of a deep string charge (the physical formulation is analog- 
gous to that described above) the problem was solved by Martynyuk [108]. For this it is 
possible, in particular, to use the method of singularities. The introduction of the 
auxiliary plane of the complex variable ~ with the correspondence, indicated in Fig. 13a, 
between it and the plane of the real flow z, yields the following expression for the complex 
potential 

, 1 1  -- l / ,  
I 
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its derivative 

<l:; 

and the complex velocity 

1 ~/11 
i t l  l : h :  i~:'- I,"). ~. J : .  

From here we have 

'1; <ih 
#+'5~ +zt l  ~-'}, ( l ~:~//:)-'~ <# ..... I i  ['-' i ,  ~r ,!, 

Then for the shape of the crater CD we have 

: .~i,-:  (I i /,:~) ~, l I  I ~ ~/, ' ",~ 
. . . . . .  �9 [ . . . . . . .  ~ _ _ _  

q 2 h  :~ I ~I, h I ' ~'-'h :'>" 
(9) 

The parameter b here is determined from the condition z(b) = -ih (the point at which the 
source is l o c a t e d )  u s i n g  t h e  e q u a t i o n  

(I ! I/) ~ hl I ! h ~ l ...... . 

2 t ~  ~ I - b z q 

On the basis of the scheme indicated, starting with his first work [109] Kuznetsov 
and his students solved many problems of practical interest concerning explosions in a 
layer with a solid foundation, in a two-layer medium, the detonation of interacting charges, 
etc. [105]; some configurations, currently under study, are shown in Fig. 13b, where i is 
the explosive charge, 2 is the free surface, and 3 is the boundary of the layers of soil 
with different: critical velocity. The class of solutions obtained with the help of this 
model was significantly expanded by the school of mathematicians in Kazan headed by ll'inskii 
[ 1 0 6 ] .  

An import:ant practical question is the correspondence between the theoretical solutions 
and the experimentally determined craters. Analysis of different formulations, carried out 
in [105, 106], showed that both models mentioned correctly predict many qualitative aspects 
of the change in the parameters of the blasting craters as a function of the geometry of the 
arrangement of the charges. However disagreements are also observed. Thus, Polyak and Sher 
[ii0] found that the experimental craters from the explosion of an overlayed charge are much 
shallower than according to (9), and that this effect depends strongly on the internal fric- 
tion angle of the soil. To describe this phenomenon they proposed a modified solid-liquid 
model, in which the condition at the boundary of the crater was changed: Ivl = c + k~P. Sher 
and Perminov [iii] confirmed that by varying the parameters c and k it is possible to obtain 
theoretical crater profiles which are close to the experimental profiles for an explosion 
of a buried string charge also. Here, however, it is now necessary to determine three 
constants (q, c, and k) in terms of the properties of the soil and parameters of the charge. 
In addition, I;o predict the possibilities of the proposed model the results of a large 
number of experimental explosions must be analyzed. 

a b 

\~.C} ;~ 

Fig. 13 
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Hydrodynamic Models of the Destructive Action of an Explosion. The determination of the 
zones of destruction in rock under the action of an explosion and evaluation of the size spec- 
trum of the crushed rock is one of the important practical problems. The complexity of this 
problem forces investigators to use simple hydrodynamic models. Although the use of such 
models in questions of the fracture of solids has not yet been justified, the results obtained 
often are confirmed in practice. This paradox was noted by Valsov and Smirnov, who first 
developed such a model [112], which was somewhat improved later by Kuznetsov [105]. Formally 
it is similar to the liquid model of an excavation blasting: the pulsed velocity field in 
an ideal incompressible liquid, generated by the explosive load, is sought; the boundary of 
the region of fracturing is found from the critical velocity c; and, the size of the pieces 
is determined by the intensity of the shear velocities. 

The problem of the distribution of the explosive charge on the boundary of the volume 
of a solid body, whose detonation destroys the given body uniformly over the volume, was 
solved on the basis of this model. The solution gives the distribution of the explosive 
charge that provides a quadratic distribution of the potential. IX the two-dimensional 
case, there arises here a flow with the complex potential m = a + bz 2. Based on the solution, 
Kuznetsov and Sher [105, 113] proposed a method for uniform shear fracture for constructing 
practical grids for drilling-blasting work in quarries. 

Shock Waves in Layered Systems. The problems of the hydrodynamics of explosions also in- 
volve the questions of the propagation and cumulation of shock waves in layered systems, 
closely related with the problems of explosion welding, high-velocity projection cleavage, 
etc. An example of unbounded cumulation in the two-dimensional case was first constructed 
by Zababakhin [114], who studied the motion of a wave with a front parallel to alternating 
flat layers of light and heavy materials. If each heavy (light) layer is thinner than the 
preceding layer, the shock wave is intensified, this idea was confirmed experimentally by 
Kozyrev et al. [115] in a scheme consisting of layers of plexiglass and lead. 

A new principle for the construction of layered systems was proposed by Trishin and 
Laptev [116]. It is based on the characteristics of the propagation of SW in a medium with 
a gradient of the acoustic impedance R. The fact that the velocity of the wave is oriented 
along the gradient leads to pressure cumulation, while the opposite orientation leads to 
an increase in the mass velocity, which can exceed the starting velocity of the striker, 
generating the wave. The acoustic approximation permitted the authors to obtain corresponding 
analytical dependences. The problem for strong SW in the case R = poD = p0(a + bu) was 
studied by Kroshko and Chubarova [117], who obtained analogous results in a computer experi- 
ment. Some aspects of the propagation of strong SW in layered systems of this kind were 
analyzed numerically, taking into account thenonlinear interaction, by Sapozhnikov and 
Fomin [118], who confirmed unequivocally the relationship between cumulation effects and the 
change in the acoustical properties of the medium. Nestrenko [119] pointed out that cumu- 
lation of a wave is observed not only because of its interaction with the contact discon- 
tinuities, but also as a result of compression waves overtaking the head wave. This question 
was investigated in detail by Fomin, Nesterenko, and Cheskidov. 

Trishin and Fomin [120] examined gaseous systems with a discrete distribution of the 
density in the layers. In their experiments, analogous to those of Voitenko et al. [121], 
for a starting pressure differential in the layers equal to 16, an increase of the mass 
velocity by more than 40% behind the SW front was obtained. Ternova [122], based on 
the principle mentioned above [116], recorded the projectile velocity of plates set in motion 
by an explosion exceeding i0 km/sec. For projection of solid layered strikers with metallic 
cumulative jets [123] velocities of the order of the velocities of the head sections of 
cumulative jets have been achieved. 

For high-velocity colisions in solids there arise SW with a quite high amplitude, which 
can give rise to, in particular, cleavage phenomena and can affect, for example, the 
quality of the joint in explosive welding. Kachan, Kiselev, and Trishin [124-128] called 
attention to the fact that the collection of plates being welded, the supports, and the 
interlayers between the explosive charges and the striker plate form a layered system, and 
they employed previously obtained solutions for the parameters of the SW and the rarefaction 
waves to analyze the effect of its components on the strength of the bond. They emphasized, 
in particular, that the acoustic stiffness of the interlayer and the immobile plate must be 
less than that of the striker plate. In [128] it was demonstrated that cleavage phenomena 
in collision problems can be controlled by constructing layered systems which vary according 
to a definite law. 
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